prhg.net
当前位置:首页>>关于怎么证明调和平均数小于等于几何平均数的资料>>

怎么证明调和平均数小于等于几何平均数

解答

因为算数平均值大于几何平均值,当ai=1/(xi)时即可证明不知为啥发不了图

调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 几何平均数:Gn=(a1a2...an)^(1/n) 算术平均数:An=(a1+a2+...an)/n 这三种平均数满足 Hn ≤ Gn ≤ An 可用归纳法证

证明过程: 设a、b均为正数。 基础的,几何和算术: 因(a - b)^2 >= 0,即(a + b)^2 - 4ab >= 0,故a + b >= √(4ab) = 2√(ab). 调和与几何:利用上式,有1 / (1/a + 1/b) = ab/(a+b) = 0,故√((a^2 + b^2) / 2) >= (a + b)/2. 平均数是指在一组...

1/a1+1/a2+....+1/an>=n*1/n√a1*a2*...*an 所以n/(1/a1+1/a2+...+1/an)

可用几何证明

调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 几何平均数:Gn=(a1a2...an)^(1/n) 算术平均数:An=(a1+a2+...+an)/n 平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n] 这四种平均数满足 Hn ≤ Gn ≤ An ≤ Qn

调和平均数:A=n/(1/a1+1/a2+...+1/an) 几何平均数:B=(a1a2...an)^(1/n) 算术平均数:C=(a1+a2+...+an)/n 平方平均数:D=√ [(a1^2+a2^2+...+an^2)/n] 这四种平均数满足 A ≤ B ≤ C ≤ D.

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 2、几何平均数:Gn=(a1a2...an)^(1/n) 3、算术平均数:An=(a1+a2+...+an)/n 4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n] 这四种平均数满足Hn≤Gn≤An≤Qn 给分

网站首页 | 网站地图
All rights reserved Powered by www.prhg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com