prhg.net
当前位置:首页>>关于几何平均数与算数平均数的大小比较证明的资料>>

几何平均数与算数平均数的大小比较证明

 平方平均数≥算数平均数≥几何平均数≥调和平均数√[(a²+b²)/2]≥(a+b)/2≥√(ab)≥2/(1/a+1/b) 

(a-b)^2 >= 0 //最基本的平方>=0 a^2+b^2-2ab >= 0 //展开 a^2+b^2+2ab >= 4ab //两边同+4ab (a+b)^2 >= 4ab //左边合并 (a+b) >= 2√ab //两边开方 (a+b)/2 >= √ab //同/2 这是两个变量,更多的类似,就不举例了 不知道比上面那个答案高到哪去...

如果有数字a和b(a、b均大于等于0),则它们的算术平均数与几何平均数之间的平均数为 a的算术平方根与b的算术平方根之和 平方 的一半。 证明如下: a和b 的算术平均数 为 (a+b)/2 a和b 的几何平均数 为 √(ab) 它们之间的平均数为: [(a+b)/2 +√(...

证明过程: 设a、b均为正数。 基础的,几何和算术: 因(a - b)^2 >= 0,即(a + b)^2 - 4ab >= 0,故a + b >= √(4ab) = 2√(ab). 调和与几何:利用上式,有1 / (1/a + 1/b) = ab/(a+b) = 0,故√((a^2 + b^2) / 2) >= (a + b)/2. 平均数是指在一组...

这个结论有个条件,就是所说的任意数要大于等于0 ,否则结论不能成立。 设原数 a=x³ b=y³ c=z³ 原数的算术平均数=(x³+y³+z³)/3 原数的几何平均数=xyz 原数的算术平均数 - 原数的几何平均数 =(x³+y³+z&...

算术平均数是所有数据的总和除以总频数所得的商,简称平均数或均数、均值。 调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。 几何平均数(geometric mean)是指n个观察值连乘积的n次方根。 平均数主要在...

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an) 2、几何平均数:Gn=(a1a2...an)^(1/n) 3、算术平均数:An=(a1+a2+...+an)/n 4、平方平均数:Qn=√ [(a1^2+a2^2+...+an^2)/n] 这四种平均数满足Hn≤Gn≤An≤Qn 给分

题干不清

算术平均数,几何平均数,调和平均数,平方平均数,还有: 加权平均数 (小学也学)

网站首页 | 网站地图
All rights reserved Powered by www.prhg.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com